pH regulation and bicarbonate transport of isolated porcine submucosal glands.

نویسندگان

  • M J Hug
  • R J Bridges
چکیده

We have previously demonstrated that the airway serous cell line Calu-3 employs a number of pH regulatory mechanisms required for bicarbonate secretion by these cells. The aim of the present study was to investigate the pH regulatory mechanisms of serous cells of freshly isolated submucosal glands (SMG). Porcine SMG were dissected out of pig tracheas obtained from a local slaughterhouse. Single glands were transferred into the chamber of an inverted microscope, immobilized by two holding pipettes and the serous cells loaded with the fluorescent pH probe 2',7'-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF). Fluorescence was monitored from small areas consisting of up to 20 cells. The fluorescence ratio of the emission after excitation at 488 nm and 436 nm respectively was used to estimate cytosolic pH (pH(i)). Resting pH(i) of SMG cells in the absence of HCO(3)(-)/CO(2) was 7.1 +/- 0.16 (n=24). Addition of a solution buffered with HCO(3)(-)/CO(2) to the bath transiently acidified the cells by 0.18 +/- 0.03 (n=18). pH(i) rapidly recovered to a slightly more alkaline value than baseline pH(i). Removal of the HCO(3)(-)/CO(2) buffer strongly alkalinized SMG cells by 0.2 +/- 0.03 (n=18). To challenge pH regulatory mechanisms we exposed the cells to 20 mmol/L NH4(+) in the absence and presence of HCO(3)(-)/CO(2). In both cases we observed a rapid increase in pH(i) followed by a slight recovery. Washout of NH4(+) strongly acidified the cells. Realkalinization of pH(i) could only be observed in the presence of Na(+). This effect was inhibited by the addition of the specific Na(+)/H(+) exchanger isoform 1 (NHE1) blocker 3-methylsulfonyl-4-piperidinobenzoyl guanidine hydrochloride (HOE 694, 10-100 micromol/L) with an half maximal inhibitory concentration (IC(50)) of approximately 20 micromol/L. Full recovery of pH(i) in the presence of HOE 694 was observed when the cells were bathed in HCO(3)(-)/CO(2) solution. Addition of forskolin (5 micromol/L) in the presence of HCO(3)(-)/CO(2) did not significantly alter pH(i) or change pH(i) recovery after acid loading. We conclude that SMG cells possess both HCO(3)(-) dependent and HCO(3)(-) independent pH(i); regulatory mechanisms that require the presence of extracellular Na(+). Further studies are required to understand whether bicarbonate is only transported to regulate pH(i) or whether this transport determines the overall secretory capacity of SMG serous cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lumen-to-surface pH gradients in opossum and rabbit esophagi: role of submucosal glands.

The opossum esophagus, like that of humans, contains a network of submucosal glands with the capacity to secrete bicarbonate ions into the esophageal lumen. To evaluate the role of these glands in protecting the epithelial surface from acid insult, we measured the lumen-to-surface pH gradient in opossum esophagus at different luminal pH and compared it to that of rabbit esophagus, an organ devo...

متن کامل

Ion transport mechanisms linked to bicarbonate secretion in the esophageal submucosal glands.

The esophageal submucosal glands (SMG) secrete HCO(3)(-) and mucus into the esophageal lumen, where they contribute to acid clearance and epithelial protection. This study characterized the ion transport mechanisms linked to HCO(3)(-) secretion in SMG. We localized ion transporters using immunofluorescence, and we examined their expression by RT-PCR and in situ hybridization. We measured HCO(3)...

متن کامل

Studies on bicarbonate transporters and carbonic anhydrase in porcine nonpigmented ciliary epithelium.

PURPOSE Bicarbonate transport plays a role in aqueous humor (AH) secretion. The authors examined bicarbonate transport mechanisms and carbonic anhydrase (CA) in porcine nonpigmented ciliary epithelium (NPE). METHODS Cytoplasmic pH (pH(i)) was measured in cultured porcine NPE loaded with BCECF. Anion exchanger (AE), sodium bicarbonate cotransporter (NBC), and CA were examined by RT-PCR and imm...

متن کامل

Effect of anion secretion inhibitors on mucin content of airway submucosal gland ducts.

In porcine bronchi, inhibition of both Cl- and[Formula: see text] transport is required to block the anion secretion response to ACh and to cause mucus accumulation within ACh-treated submucosal gland ducts [S. K. Inglis, M. R. Corboz, A. E. Taylor, and S. T. Ballard. Am. J. Physiol. 272 ( Lung Cell. Mol. Physiol. 16): L372-L377, 1997]. In this previous study, a combination of three potential [...

متن کامل

ALUNG October 21/4

Ballard, Stephen T., Laura Trout, Zsuzsa Bebök, E. J. Sorscher, and Angela Crews. CFTR involvement in chloride, bicarbonate, and liquid secretion by airway submucosal glands. Am. J. Physiol. 277 (Lung Cell. Mol. Physiol. 21): L694–L699, 1999.—Previous studies demonstrated that AChinduced liquid secretion by porcine bronchi is driven by active Cl2 and HCO3 2 secretion. The present study was unde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JOP : Journal of the pancreas

دوره 2 4 Suppl  شماره 

صفحات  -

تاریخ انتشار 2001